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Abstract

Post-traumatic stress disorder (PTSD) has traditionally been viewed as a psychiatric dis-
order of fear, memory, and emotional regulation. However, growing evidence implicates
systemic and neuroinflammation as key contributors. Individuals with PTSD often ex-
hibit elevated blood levels of pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α, and
C-reactive protein, indicating immune dysregulation. Dysfunctions in the hypothalamic–
pituitary–adrenal (HPA) axis marked by reduced cortisol levels impair the body’s ability
to regulate inflammation, allowing persistent immune activation. Circulating cytokines
cross a weakened blood–brain barrier and activate microglia, which release additional
inflammatory mediators. This neuroinflammatory loop can damage brain circuits critical to
emotion processing including the hippocampus, amygdala, and prefrontal cortex, and dis-
rupt neurotransmitter systems like serotonin and glutamate, potentially explaining PTSD
symptoms such as hyperarousal and persistent fear memories. Rodent models of PTSD
show similar inflammatory profiles, reinforcing the role of neuroinflammation in disease
pathology. Bromo-epi-androsterone (BEA), a synthetic analog of dehydroepiandrosterone
(DHEA), has shown potent anti-inflammatory effects in clinical trials, significantly reducing
IL-1β, IL-6, and TNF-α. By modulating immune activity, BEA represents a promising
candidate for mitigating neuroinflammation and its downstream effects in PTSD. These
findings support the rationale for initiating clinical trials of BEA as a novel therapeutic
intervention for PTSD.

Keywords: post-traumatic stress disorder (PTSD); interleukin-1 beta (IL-1β); interleukin 6
(Il-6); tumor necrosis factor alpha (TNFα); high molecular group box 1 protein (HMGB1);
blood–brain barrier; damage-associated molecular patterns (DAMP); dehydroepiandrosterone
(DHEA); bromo-epi-androsterone (BEA)

1. Introduction
Post-traumatic stress disorder (PTSD) has historically been defined as a psychiatric

condition precipitated by trauma, classically characterized by intrusive memories, hyper-
arousal, and avoidance symptoms. However, emerging research is reshaping this under-
standing by highlighting a significant biological component to PTSD pathophysiology—
namely, chronic neuroinflammation and immune dysregulation [1,2]. Patients with PTSD
have been found to exhibit elevated levels of pro-inflammatory cytokines (e.g., interleukin-
1β, interleukin-6, tumor necrosis factor-α) and acute-phase reactants like C-reactive protein
compared to non-PTSD controls [1]. This heightened inflammatory state is not merely
an epiphenomenon; it is implicated in the development and maintenance of core PTSD
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symptoms and comorbid medical conditions [2,3]. Indeed, chronic low-grade inflammation,
particularly within the central nervous system, is increasingly viewed as a key contributor
to PTSD’s pathogenesis and its high rates of associated cardiovascular, metabolic, and
neurodegenerative disorders [2].

Much of the impetus for reconceptualizing PTSD as a neuroinflammatory disease
stems from studies in US veterans. Veterans with combat-related PTSD show robust
evidence of immune activation; for example, a Department of Veterans Affairs cohort study
(N = 735) found that individuals with current PTSD had significantly higher inflammatory
markers than those with remitted or no PTSD [3]. These findings suggest that active PTSD
is accompanied by a systemic pro-inflammatory shift, which normalizes when symptoms
abate. Parallel research using multi-omics approaches in war-zone-exposed veterans has
identified reproducible molecular signatures of PTSD involving upregulated inflammation-
related pathways and immune dysregulation [4]. Such studies, often led by collaborative
teams at the Department of Veterans Affairs, Department of Defense, NIH, and leading
academic centers, underscore a growing consensus that PTSD’s clinical manifestations are
intertwined with biological processes of chronic inflammation. Preclinical models further
reinforce this paradigm, as exposure to severe stress in animals triggers neuroinflammatory
cascades—including microglial activation and cytokine release—that produce anxiety- and
fear-related behaviors analogous to PTSD [1].

Viewing PTSD through the lens of neuroinflammation carries significant clinical impli-
cations. It provides a mechanistic framework to explain why PTSD sufferers, particularly
combat veterans, face elevated risks of immunologically mediated conditions from au-
toimmune disorders to accelerated cardiovascular disease [2]. It also opens the door to
novel interventions: therapies targeting immune pathways (e.g., anti-inflammatory or
immunomodulatory agents) and biomarkers of inflammation are being explored as ad-
juncts to conventional psychotherapeutics [2]. This evolving framework situates PTSD
not only as a disorder of the mind, but as a complex neuroimmune condition, a perspec-
tive that may fundamentally influence future research and treatment approaches [3,5].
Considering this paradigm shift, this study will examine the evidence linking chronic
inflammation to PTSD, elucidate the underlying neuroimmune mechanisms, and discuss
the potential for an immune-focused strategy to improve outcomes for those suffering from
this often-refractory disorder.

2. Mechanisms of Neuroinflammation in PTSD
The pathogenesis of PTSD is increasingly viewed as sustained neuroinflammatory

signaling where stress-induced immune dysregulation leads to persistent alterations in
central nervous system (CNS) homeostasis. A key mediator in this process is high mobility
group box 1 (HMGB1), a nuclear protein that, when released extracellularly during cellular
stress or injury, functions as a damage-associated molecular pattern (DAMP). HMGB1 is
passively released by necrotic cells or actively secreted by immune cells in response to
trauma, where it acts as a potent amplifier of innate immune signaling [6].

Once in the extracellular milieu, HMGB1 interacts with several pattern recognition
receptors, notably Toll-like receptor 4 (TLR4) and the receptor for advanced glycation end
products (RAGE). Binding of HMGB1 to TLR4 initiates a signaling cascade that activates
NF-κB and triggers transcription of the aforementioned pro-inflammatory cytokines such as
IL-1β, IL-6, and TNF-α [7,8]. Concurrently, HMGB1 engagement of RAGE, a multi-ligand
receptor expressed on neurons, endothelial cells, and microglia promotes cellular adhesion,
migration, and sustained inflammatory responses via MAPK and JAK/STAT pathways [9].

The HMGB1–TLR4–RAGE signaling axis has been implicated in microglial priming
and activation, a hallmark of chronic neuroinflammation observed in PTSD models. Acti-
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vated microglia perpetuate the inflammatory state by producing reactive oxygen species
(ROS), nitric oxide, and additional cytokines that further exacerbate neuronal dysfunction
and synaptic remodeling [10]. Notably, preclinical studies have shown that HMGB1 is
upregulated in brain regions associated with fear and emotion regulation, including the
amygdala and hippocampus, following traumatic stress [11]. In parallel, increased expres-
sion of TLR4 and RAGE has been observed in the prefrontal cortex and hippocampus of
rodent models subjected to chronic stress paradigms [12].

Another critical outcome of HMGB1–mediated signaling is the compromise of the
blood–brain barrier (BBB). HMGB1 and pro-inflammatory cytokines increase BBB per-
meability, allowing peripheral immune cells and inflammatory mediators to infiltrate
the CNS, thereby establishing a feed-forward loop of neuroimmune activation [13]. This
phenomenon is particularly relevant to PTSD, as increased BBB permeability has been asso-
ciated with both systemic inflammation and the onset of cognitive and affective symptoms.

HMGB1 serves as a pivotal damage-associated molecular pattern (DAMP) linking
trauma to innate immune activation in the CNS. Through its interactions with TLR4 and
RAGE, HMGB1 orchestrates a cascade of neuroinflammatory events including microglial ac-
tivation, cytokine secretion, and BBB disruption that underlie the neuropathophysiological
changes seen in PTSD.

Moreover, additional molecular pathways implicated in PTSD include cyclooxygenase-
2 (COX-2). COX-2 is an inducible enzyme responsible for the synthesis of pro-inflammatory
prostaglandins in the central nervous system. Elevated COX-2 expression has been reported
in preclinical models of stress and fear learning, where it contributes to both synaptic
plasticity and inflammation [14]. Inhibition of COX-2 has been shown to reduce anxiety-
like behavior and modulate amygdala reactivity, suggesting that prostaglandin signaling
may be a key amplifier of the neuroimmune response in PTSD [15].

In parallel, altered redox metabolism, particularly involving glucose-6-phosphate
dehydrogenase (G6PD), has emerged as another contributor to PTSD-related pathology.
G6PD is the rate-limiting enzyme in the pentose phosphate pathway and a primary source
of NADPH which is essential for both antioxidant defense and immune cell function.
Reduced G6PD activity can lead to increased oxidative stress and impaired resolution
of inflammation [16]. This is especially relevant in PTSD where both oxidative burden
and immune dysfunction are elevated. Diminished NADPH availability may also impair
the immune-modulating function of neurosteroids such as DHEA, which relies on redox-
sensitive mechanisms to suppress inflammatory pathways, including those involving
HMGB1 and TLR4.

Taken together, these findings suggest that PTSD is a psychiatric manifestation of
chronic neuroimmune and metabolic dysregulation wherein uncontrolled inflammation,
oxidative stress and aberrant prostaglandin signaling converge. This reconceptualization of
PTSD opens the door for therapeutic strategies targeting these biological pathways. In sub-
sequent sections, we will explore inflammatory cytokines in PTSD, the anti-inflammatory
role of DHEA, and the emerging promise of its synthetic analog, bromoepiandrosterone
(BEA), as a candidate for immune modulation in PTSD.

3. Mitochondrial Dysfunction in PTSD
Mitochondrial dysfunction is associated with psychiatric disorders [17] and is in-

creasingly recognized as a central pathophysiological feature of PTSD, contributing not
only to impaired neuroplasticity and cognitive dysfunction but also to the chronicity of
neuroinflammatory responses [18]. Mitochondria are critical regulators of neuronal energy
production, redox homeostasis, calcium buffering, and apoptotic signaling. In individu-
als with PTSD, as well as in stress-exposed animal models, a consistent pattern emerges:
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impaired mitochondrial oxidative phosphorylation (OXPHOS), elevated production of
reactive oxygen species (ROS), and reduced expression of key transcriptional co-activators
such as peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α),
a master regulator of mitochondrial biogenesis [18,19].

This decline in mitochondrial respiratory function not only compromises ATP syn-
thesis but also promotes oxidative stress through excess ROS generation, which damages
mitochondrial DNA, lipids, and proteins, exacerbating mitochondrial inefficiency in a feed-
forward manner [19]. In PTSD, this vicious cycle appears further reinforced by a shift in
mitochondrial dynamics toward fission (mediated by proteins like DRP1) rather than fusion
(regulated by proteins such as MFN1/2 and OPA1), leading to fragmented and less func-
tional mitochondria [19]. Fragmentation is often associated with increased susceptibility to
cell death and decreased mitochondrial resilience under stress.

Dysfunctional mitochondria also contribute to dysregulated mitophagy: the selective
autophagic removal of damaged mitochondria. In PTSD models, mitophagy appears
impaired or insufficient, resulting in the accumulation of dysfunctional mitochondria
that continue producing ROS and perpetuating neuroinflammation [19]. These cellular
stress signals can activate innate immune pathways, including NF-κB and inflammasome
complexes, leading to elevated levels of the pro-inflammatory cytokines IL-1β, TNF-α,
and IL-6 [18]. This low-grade, chronic inflammation not only exacerbates neuronal injury
but also interferes with neurogenesis and synaptic remodeling, which are critical for
recovery from psychological trauma. Moreover, the hippocampus and prefrontal cortex,
regions involved in memory, emotional regulation, and executive function appear especially
vulnerable to mitochondrial dysfunction. In these areas, impaired mitochondrial activity
has been linked to dendritic spine loss, synaptic pruning abnormalities, and a reduced
capacity for long-term potentiation (LTP), correlating with the cognitive and emotional
symptoms of PTSD [19]. These ramifications of mitochondrial dysfunction in PTSD are
seen in the top portion of Figure 1.

Figure 1. Mitochondrial Dysunction in PTSD. This figure shows the myriad physiologic alterations
induced by mitochondrial dysfunction (top) as well as the proposed reversal of those alterations and
restored function via neuromodulation imparted by DHEA and BEA (bottom).
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4. Inflammatory Cytokines in PTSD
A 2015 meta-analysis examined inflammatory markers in PTSD and found elevated

levels of IL-1β, IL-6, TNF-α, and interferon-γ among individuals with PTSD compared to
controls. Importantly, IL-1β was identified as a potential biomarker of illness duration,
while IL-6 was linked to symptom severity, suggesting distinct roles for these cytokines in
disease progression and clinical expression [20]. In a follow-up study, the same research
group further explored the relationship between inflammatory markers and PTSD pheno-
types in a large cohort. They confirmed that elevated IL-6 and C-reactive protein (CRP)
levels were associated with PTSD severity and chronicity, particularly among individuals
with heightened re-experiencing symptoms and prolonged symptom duration. The follow-
up study also provided evidence for the state–trait nature of inflammation in PTSD with
IL-6 emerging as a consistent marker across different disease stages. Together, these studies
underscore the role of systemic inflammation in PTSD and support the use of IL-1β, IL-6,
and CRP as potential biomarkers for disease monitoring and therapeutic targeting [21].

5. DHEA and PTSD
Dehydroepiandrosterone (DHEA), along with its sulfated form DHEAS (hereafter,

collectively referred to as DHEA), comprises the most prevalent class of steroid hormones
found in humans. The secretion of DHEA undergoes distinct developmental changes
throughout the human lifespan. During fetal development, elevated levels of DHEA are
produced by the adrenal fetal zone [22]. Following birth, these levels decline significantly
over the first several months and remain suppressed until adrenarche, which typically
occurs between ages six and eight. At that time, production shifts to the zona reticularis
of the adrenal cortex, resulting in a gradual increase in circulating levels [23,24]. DHEA
concentrations in plasma and cerebrospinal fluid reach their apex in the mid-twenties
and then exhibit a progressive decline with advancing age, with levels falling to roughly
20% of their peak by the late 60s—a period coinciding with the rising prevalence of many
age-related diseases [25–27].

Mounting evidence links dysregulation of DHEA levels to the pathophysiology of
various neuropsychiatric disorders. In the central nervous system, DHEA contributes to
several critical processes, including neuroprotection, neurite extension, neurogenesis, and
neuronal survival. It also influences apoptosis, modulates catecholamine synthesis and
release, and exhibits antioxidant, anti-inflammatory, and anti-glucocorticoid properties [28].

There is an increased understanding of DHEA in the context of PTSD; studies demon-
strate that individuals with PTSD often exhibit elevated levels of DHEA and a reduced
cortisol/DHEA ratio, suggesting a neuroendocrine shift that may reflect an adaptive or
compensatory response to chronic stress [29]. Further, higher DHEA levels may be as-
sociated with psychological resilience and neuroprotection, potentially modulating the
impact of trauma on brain function and emotional regulation [29]. This line of research
positions DHEA as both a biomarker and a possible therapeutic target in stress-related
psychopathology [28,30].

Supplementation with exogenous DHEA may produce unwanted consequences, in-
cluding estrogenic or androgenic side effects [31], and although DHEA can impart antioxi-
dant effects [32], at larger doses, it is pro-oxidant [33,34].

6. Bromoepiandrosterone (BEA)
16α-Bromoepiandrosterone (BEA) is a synthetic analog of DHEA, structurally modi-

fied to eliminate the androgenic and pro-oxidant effects observed with high-dose DHEA.
These changes make BEA a promising therapeutic candidate, offering the benefits of DHEA
without the associated risks of hormonal overstimulation and oxidative stress [35,36].
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BEA, previously known as HE2000, has significantly enhanced biological potency
compared to its parent, DHEA. It acts as a strong inhibitor of glucose-6-phosphate dehydro-
genase (G6PDH), displaying approximately 60 times greater efficacy than DHEA in enzyme
inhibition [37,38]. Originally developed in the late 1990s for its potential in managing in-
fectious diseases, BEA has since been evaluated in nine clinical studies involving a total
of 228 individuals, addressing conditions such as HIV, malaria, and hepatitis [37–41]. In
recognition of its therapeutic promise, the US FDA granted BEA investigational new drug
(IND) status in 1999 for the treatment of HIV/AIDS, where it demonstrated encouraging
clinical results [42–44]. Beyond antiviral and antibacterial activity, BEA exhibits robust
immunomodulatory properties, notably in reducing pathological inflammation [35,45].
Collectively, this has led to its investigation as a candidate therapy for Mycobacterium
tuberculosis, the leading cause of death from infectious disease globally [46].

Immunologically, BEA mimics the Th1-skewing effects of its parent compound, DHEA,
aiding in the restoration of Th1/Th2 balance, a shift that is commonly observed with aging.
Rebalancing these immune responses may help mitigate age-related declines in vaccine
responsiveness, susceptibility to infections and increased prevalence of autoimmune dis-
eases [47–49]. Earlier human trials utilized an intramuscular oil-based formulation of BEA,
which was associated with local adverse events such as mild to moderate pain and tissue
induration at the injection site [39,43]. A newer, water-soluble formulation has since been
developed and is expected to reduce these local reactions substantially [50].

Positive experience with DHEA gives reason to believe that its halogenated analog,
BEA, may be a modulator of mitochondrial dysfunction within the context of PTSD through
several biological effects [51].

In preclinical models and human studies, DHEA has been observed to counteract
mitochondrial deficits by dampening inflammatory cytokines and bolstering antioxidant
systems. Notably, in populations with PTSD, mitochondrial-related metabolic shifts across
glycolysis, fatty acid oxidation, and the TCA cycle underscore the pronounced mito-
chondrial stress’ contribution to PTSD. DHEA protects against oxidative mitochondrial
damage [52]. Its antioxidant effects likely mitigate the inflammatory cascades, indirectly
preserving mitochondrial integrity and function [53]. A critical mechanism is the activation
of mitochondrial biogenesis via the PGC-1α → NRF-1/2 → TFAM pathway as seen in
the lower portion of Figure 1. PGC-1α is acknowledged as the master regulator of mi-
tochondrial renewal and energy homeostasis [54]. In liver and other tissues, DHEA has
been experimentally shown to upregulate PGC-1α, NRF-1, and TFAM—leading to higher
ATP production, increased mitochondrial DNA content, and reduced oxidative stress [55].
This cascade mirrors the fundamental biology of mitochondrial quality control, linking
biogenesis and clearance in a balanced cycle [56]. Furthermore, DHEA’s influence extends
into neurochemical domains: it modulates GABAergic and glutamatergic signaling, neural
circuits deeply intertwined with cognition and stress resilience. While DHEA clinical trials
show modest cognitive improvement, the neurochemical modulation offers a plausible
biological bridge to its stress-buffering effects, providing the reason to believe BEA, the
potent, water-soluble, non-androgenic DHEA analog may intervene more successfully in
these pathways. Preclinical data indicate that BEA mirrors DHEA’s anti-inflammatory,
metabolic, and mitochondrial-enhancing properties—without androgenic side effects. In
models noted for chronic inflammation and metabolic dysregulation, BEA reportedly re-
stores cytokine balance and fortifies mitochondrial integrity [41,42], suggesting a unique
potential in PTSD-linked mitochondrial derangements.

A logical progression in BEA’s development is to investigate its effects in validated
animal models of PTSD. There are multiple existing animal models of PTSD (Table 1).
A comprehensive review examined the strengths and limitations of commonly used rodent
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models, such as single prolonged stress (SPS), stress–re-stress (S-R), and predator-based
paradigms in replicating human PTSD pathology [57].

Table 1. PTSD animal model summary [58–71].

PTSD Animal Model Summary

Model Description PTSD Feature Modeled References

Fear Conditioning Tone-shock pairing Persistent fear,
amygdala circuits

Flandreau [58]
Maren [59]

Stress-Enhanced
Fear Learning

(SEFL)

Stressor precedes
conditioning

Fear over-
consolidation

Rau [60]
Pennington [61]

Single Prolonged
Stress (SPS)

Restraint → swim
→ ether

HPA dysregulation,
extinction deficits

Liberzon [62]
Knox [63]

Social Isolation/
Chronic

Unpredictable
Stress

Isolation and/or
unpredictable mild

stress

Impaired extinction,
reduced neurosteroids

Locci [64]
Serra [65]

Arousal-Based
Individual

Screening (AIS)

Trauma +
screening for
hyperarousal

Individual
vulnerability/resilience

Torrisi [66]
Ritov [67]

Sleep/Physiologic
Models

Disrupted
REM/NREM after

stress

Sleep fragmentation,
hyperarousal

Grafe [68]
Jung [69]

TLR2/PGE2 in
Social Defeat Stress

10-day intruder-
aggressor exposure

Social avoidance,
anxiety-like behavior

Nie [70]
Ishikawa [71]

Although these models provide valuable insights into neuroendocrine responses,
genetic predispositions, and potential therapeutic targets, they face challenges in capturing
the full complexity of PTSD, particularly in terms of ethological relevance and translational
validity. While some of these models primarily assess behavioral phenotypes, others
incorporate analyses of mechanistic pathways underlying neuroinflammation, including
the role of proinflammatory cytokines and innate immune activation. Of the models
referenced in Table 1, several tested for, and demonstrated elevated IL-1β, TNF-α, and
IL-6 [63,66,70,71].

A key discovery regarding co-occurrence of neuroinflammation and microglial ac-
tivation came from Alzheimer’s disease research; these findings illustrate that Toll-like
receptor (TLR) activation is required for resultant tauopathy of Alzheimer’s [72]. Toll-
like receptors 2 and 4 (TLR2 and TLR4) are pattern recognition receptors that detect both
damage-associated molecular patterns (DAMP- referenced earlier) and pathogen-associated
molecular patterns (PAMPs). In the brain, activation of these receptors triggers the NF-κB
signaling pathway, leading to increased expression of proinflammatory cytokines such as
IL-1β, TNF-α, and IL-6. In models of PTSD, activation of TLR2 and TLR4 has been observed
following psychological stress, implicating innate immune signaling as a contributor to
chronic neuroinflammation [70]. Figure 2 graphically reflects the inflammatory cascade
producing neuroinflammation that results in PTSD.
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Figure 2. Alarmins generated from psychologic trauma initiate a cascade resulting in neuroinflamma-
tion, microglial activation and oxidative stress. Impacting the amygdala, hippocampus and prefrontal
cortex, it produces the behavior and memory manifestations of PTSD.

7. Discussion
DHEA has been shown to function as a negative allosteric modulator of GABA-

A receptors [73] and a positive modulator of NMDA receptor function [74]. Given the
structural similarity of BEA to DHEA, it is plausible that BEA may exhibit neuromodulatory
actions on glutamatergic and GABAergic systems relevant to PTSD pathophysiology [75].
These actions shift the excitatory/inhibitory balance toward greater cortical excitability,
which may facilitate cognitive flexibility and emotional processing. This is particularly
relevant in PTSD, where dysfunctional inhibitory tone and heightened glutamatergic
signaling are core features of the disorder’s neurobiology. Although direct studies on
BEA’s receptor interactions remain limited, its structural and functional analogies to DHEA
suggest that it may exert similar modulatory effects, potentially contributing to its observed
behavioral and immunomodulatory benefits [76].

Current treatment guidelines for PTSD primarily emphasize psychotherapeutic ap-
proaches, such as exposure therapy and cognitive restructuring. However, these standard
interventions often fall short, with up to 50% of patients not responding in clinical stud-
ies [77]. Moreover, many Veterans from Operation Enduring Freedom, Operation Iraqi
Freedom, and Operation New Dawn (OEF/OIF/OND) show reluctance to participate in
traditional mental health care [78]. The use of complementary and alternative medicine
(CAM), particularly for stress- and trauma-related symptoms, has grown rapidly in the
United States; research indicates that Veterans with PTSD may be more open to CAM
therapies than those without PTSD [79]. These findings collectively support the pursuit of
innovative strategies that address the underlying mechanisms of PTSD.

A wide range of pharmacological treatments have been evaluated in PTSD, from re-
purposed antidepressants and blood pressure medications to novel neurohormonal agents
and psychedelics. As PTSD is associated with oxidative stress, antioxidant therapy fo-
cused on mitochondrial function has shown limited benefit [80]. Traditional drugs like
SSRIs and SNRIs offer modest relief for many (especially civilian PTSD), addressing sero-
tonin/norepinephrine dysregulation [81]. Adrenergic agents (prazosin, propranolol) target
the overactive sympathetic nervous system, with prazosin helping some patients’ sleep [82]
and propranolol showing potential in memory modification [83]. Glutamatergic drugs
are emerging as powerful (e.g., ketamine for rapid symptom control) [84], D-cycloserine
to enhance therapy [85]), highlighting the role of learning and extinction pathways in
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recovery. The breakthrough with MDMA-assisted therapy demonstrates that profound
symptom remission is achievable by pharmacologically facilitating emotional processing—
an integration of drug and therapy action on PTSD’s core pathology [86]. Meanwhile,
drugs like cannabinoids and neurosteroids explore alleviating specific PTSD symptoms
(nightmares, hyperarousal) by mimicking or enhancing the brain’s natural modulators
(endocannabinoids, GABAergic neurosteroids) [87]. Finally, and the space into which BEA
may fit, are investigational approaches addressing inflammation and oxidative stress; inter-
ventions that recognize PTSD’s systemic impact beyond neurotransmitters [88]. One such
drug is trilostane, an inhibitor of 3β-hydroxysteroid dehydrogenase, causes an increase in
neurosteroids; a veterinary product, it may have utility in neuroinflammation [89].

PTSD often coexists with both depression and seizures. Approximately 10–20% of
individuals with PTSD develop comorbid seizure disorders, especially non-epileptic or
stress-induced seizures [90]. For example, in depression, neurosteroid levels and restoration
of these levels is associated with anxiolytic and antidepressant effects. Approximately
10–20% of individuals with PTSD develop comorbid seizure disorders, especially non-
epileptic or stress-induced seizures [90]. This underlies the FDA approval of brexanolone
(a metabolite of DHEA) for postpartum depression, and ongoing investigation of its effects
in major depressive disorder (MDD) [91,92].

PTSD individuals with coexisting MDD and epilepsy or seizure-like events further
complicate treatment and reduce quality of life. Several pharmacologic agents evaluated for
PTSD also exhibit therapeutic effects on these comorbidities. Selective serotonin reuptake
inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs)—notably ser-
traline, paroxetine, and venlafaxine—are first-line treatments for both PTSD and MDD. In
clinical trials, these agents improved not only PTSD symptom clusters but also depressive
symptoms when present [90]. Ketamine, an NMDA receptor antagonist, has demon-
strated rapid antidepressant effects alongside PTSD symptom relief in treatment-resistant
populations [93]. MDMA-assisted therapy, recently validated in two Phase 3 trials, also
significantly reduced depressive symptoms in PTSD patients, suggesting that its serotonin-
and oxytocin-mediated mechanisms may address both conditions simultaneously [86].

For patients with co-occurring epilepsy, the anticonvulsant topiramate has shown dual
benefit: in addition to controlling seizures, it reduced PTSD re-experiencing symptoms
and nightmares in small clinical trials [84,93]. Lamotrigine, another antiepileptic with
antidepressant properties, improved anger and intrusive symptoms in PTSD while also
stabilizing mood, particularly in patients with bipolar depression [94]. While propranolol
and prazosin target PTSD’s adrenergic dysregulation, they are not established treatments
for depression or epilepsy, though prazosin may reduce suicidal ideation in veterans with
PTSD [95]. Emerging anti-inflammatory and neuroprotective agents like N-acetylcysteine
(NAC) have shown promise in PTSD with comorbid substance use and depression, possibly
through modulation of oxidative stress and glutamatergic balance [96]. Overall, these
overlapping therapeutic effects support an integrative approach to PTSD treatment that
considers and targets comorbid depressive and epileptiform conditions when present.

BEA may find a place in treatment of these diseases with neuroinflammation as
reflected in its suggested use in perioperative neurocognitive disorders (PND) [97] and in
stiff person syndrome (SPS) [98].

The next step for BAE would be an animal model trial that would support a ran-
domized, double-blinded, placebo-controlled clinical trial of individuals meeting DSM-5
criteria for PTSD is contemplated. The projected study would assess whether adding
BEA offers additional benefits over conventional PTSD treatment alone. Outcomes mea-
sured would be improvement in validated PTSD psychological tools and decrease in the
pro-inflammatory cytokines.
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This proposed trial is grounded in the evolving understanding of PTSD as a neuroin-
flammatory disorder and the unique neuroendocrine capacity of BEA to enhance immunity
and dampen non-productive inflammation. Ultimately, the goal is to improve outcomes,
not just for combat veterans, but all those living with PTSD by addressing not only the
psychological scars of trauma but also the invisible inflammatory wounds that accompany
chronic stress.
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